Asynchronous FMGProcess Web services
4/12/2009

CGL

Jun Ji
 In this asynchronous web services, we planned a ‘ticket returning’ model to avoid waiting a result of the submitted job. This model is implemented by 3 parts: submit(), getstatus(), getresult().

[image: image1.emf]submit()

getstatus()

getresult()

FMGProcess

Submit a job by submit()

Return a ticket for the job

Get status of the job by the

returned ticket

Get a result of the job by the

returned ticket

Internet

Figure 1 Ticket returning model
This model returns a ticket immediately as soon as a job is submitted to allow clients to track the job’s result with the ticket later. It means the clients don’t have to wait until the web service makes a result. Following Figure 2, 3 shows this advantage.

[image: image2.emf]Server Client

Submit a job by submit()

Return a ticket for the job

FMGProcess for

the submitted job

Ask status with the ticket by getstatus()

Return status of the ticket

’

s job

Ask a result with the ticket by getstatus()

Return a result of the ticket

’

s job

 Figure 2 Asynchronous FMGProcess Web services

[image: image3.emf]Server Client

Submit a job by submit()

FMGProcess for

the submitted job

Return a result of the ticket

’

s job

Waiting for a result

 Figure 3 Synchronous FMGProcess Web services
Ticket returning model

As you can see in the Figure 1, this model is achieved by 3 methods: submit(), getstatus(), getresult(). When a job is sent, it decides the job’s validity and makes a ticket. After that, executes a main process as a thread to return the job’s ticket immediately. Each ticket will be generated as unique string by each thread. But, because the each thread will not have any shared memory, the ticket information should not be in memory, but should exist in a stable storage as like files. For this fact, the ticket string will be also used as the ticket job’s directory name to pair them easily.
[submit]

A client will propose a job by this method. It will judge the job’s validity by checking the requested input file’s URL and its file name. If the URL is valid and does have a correct file (.cgn), the job will be successfully accepted and a client will receive a ticket of the job.

[image: image4.emf]Start

Open an URL

connection to input

URLs

Is it an

available URL?

Is it a .cgn file?

Generate an

unique string to be

used as a ticket

Run FMGProcess

as a thread

Return the ticket

Yes

Yes

Return an error

message

Return an error

message

No

No

Create an

output dir and

log files

Save the input file

from the URL

Check if the

input file is

saved

Write an error

message in a

logfile

Run an Ant to

execute a

FMGProcess

binary file

No

Yes

Figure 4 submit() flowchart

 [getstatus]
This method checks status of a job. Because the main FMGProcess records transactions to each job’s log file according each step, the log file can be used to know its progress. If the job was finished successfully, the last line of log file ends by ‘finished’.

[image: image5.emf]Start

Is the input

ticket not

empty?

Is the ticket

’

s

job exist?

Return the last line

Yes

Return an error

message

Return an error

message

No

No

Read the

last line of

the job

’

s

logfile

Yes

Figure 5 getstatus() flowchart
[getresult]

A client uses this method to receive a result of the submitted job. It runs getstatus() and if the job was finished, generates the output files URL and return them.

[image: image6.emf]Start

Is the input

ticket not

empty?

Yes

Return an error

message

No

Run getstatus() to

check if the

ticket

’

s job is

finished

Is the job

finished?

Generate output

URLs

Return the URLs

Yes

Return current

status

No

Figure 6 getresult flowchart
[Implementation and packaging]
This asynchronous web services model has been implemented by JAVA JDK 6, MAVEN 2.1.0, TOMCAT 6.0.18, AXIS2 1.4.1 (Also, I used eclipse 3.4.2 Ganymede).
Each web service has one Java file which consists of two classes.
[FMGProcessOutput]

It contains the 3 methods: submit(), getstatus(), getresult() which will be exposed by webservice. Another method getmyip() is used to write URLs of output files.

[image: image7.emf]
Figure 7 class FMGProcessOutput
[RunFMGProcessOutput]

This class extends a class Thread. It does main process of each FMGProcess (Currently, we have two kinds of FMGProcess: FMGProcessOutput, FMGProcessInput).

[image: image8.emf]

Figure 8 class RunFMGProcessOutput
In a method run(), it executes a binary file to make outputs and to do this, this class uses Ant APIs such like setExecutable(), execute(). The setExecutable(String value) sets the target file to be executed.

This webservice is distributed with a property file which has a location of the binary file which will be read by the method run() when this method should find the binary file to execute it.
[Testing]
To test the implementation, we use JUnit and when JUnit tests, tested methods temporally should be modified to have public property. Also, other codes which exceptionally should be edited will be referred in the related test codes.

* The test codes are based on each method’s flowchart to make every possible case can happen.
[image: image9.jpg]TestCase
Q Test4ProcessOutput_asyn

— [=1 Attributes
4 fmgoutput: FMGProcessOutput
4 fmgoutputrun: RunFMGProcessOutput

— [=] Operations
«create»
4 +Test4ProcessOutput_asyn
4 +setUp:void
4 +testSubmit:void
4. +testGetstatus:void
4. +testGetresult:void
4 +testLogger:void
4. +testGetmyip:void
4. +testRunFMGProcessOutput_means_allp
4 +testSavelnputfileFromUrl:void
4 +tearDown:void
4 +main:void

Figure 9 class Test4ProcessOutput_asyn
[testSubmit]

· If it accepts null or wrong input URLs.
[testGetstatus, testGetresult]

· If it accepts null or not existing tickets.

[testLogger]
· If it writes and reads correctly.

[testGetmyip]

· If it reads an exact IP address.

[testGetmyip]

· If it reads an exact IP address.

[testRunFMGProcessOutput_means_allprocess]

** Every time before this method, submit() will check validity of input values. So this method can be free from the risk.

· It gets correct input values to run whole process and check if it makes a correct result.
[testSaveInputfileFromUrl]

· It receives wrong input values to check if it can detect the wrong, and check if it can read a file correctly from correct input URLs.
[Install]
This package deploys maven 2.1.0 to provide one-step installation process for all of services.
(FMGProcessOutput_asyn, FMGProcessInput_asyn, FMGRealTimePredication)
** The system should have a correct system variable $CATALINA_HOME and Axis2 should be located in ${env.CATALINA_HOME}/webapps/axis2.

1. Download the service package.

svn co http://crisisgrid.svn.sourceforge.net/svnroot/crisisgrid/FloodGrid/FMGProcess
2. Unpack and move to the FMGProcess directory to compile it.

cd FMGProcess

mvn compile

3. Check if the aar files are moved to ${env.CATALINA_HOME}/webapps/axis2/WEB-INF/services

4. Both asynchronous webservice have a test code. To use this, every method property of each webservice should be changed to ‘public’. If there is other instruction, it might be written in the test code file by commentaries.
mvn test or mvn clean install
_1300466446.vsd
Server

Client

Submit a job by submit()

Return a ticket for the job

FMGProcess for the submitted job

Ask status with the ticket by getstatus()

Return status of the ticket’s job

Ask a result with the ticket by getstatus()

Return a result of the ticket’s job

_1300483273.vsd
Start

Is the input ticket not empty?

Is the ticket’s job exist?

Read the last line of the job’s logfile

Yes

Return the last line

Yes

Return an error message

Return an error message

No

No

_1300484033.vsd
Start

Is the input ticket not empty?

Run getstatus() to check if the ticket’s job is finished

Is the job finished?

Yes

Return an error message

Generate output URLs

No

Return the URLs

Yes

Return current status

No

_1300487986.psd

_1300484011.vsd
Start

Open an URL connection to input URLs

Is it an available URL?

Is it a .cgn file?

Generate an unique string to be used as a ticket

Run FMGProcess as a thread

Return the ticket

Yes

Yes

Return an error message

Return an error message

No

No

Create an output dir and log files

Save the input file from the URL

Check if the input file is saved

Write an error message in a logfile

Run an Ant to execute a FMGProcess binary file

No

Yes

_1300466733.vsd
Server

Client

Submit a job by submit()

Waiting for a result

FMGProcess for the submitted job

Return a result of the ticket’s job

_1300462972.vsd
�

Group�

�

�

submit()

getstatus()

getresult()�

FMGProcess�

Submit a job by submit()

Return a ticket for the job

Get status of the job by the returned ticket

Get a result of the job by the returned ticket

Internet

